A Hardware-in-the-Loop Simulation Case Study of High-Order Sliding Mode Control for a Flexible-Link Robotic Arm


Creative Commons License

Arısoy A.

APPLIED SCIENCES, cilt.15, sa.19, ss.1-20, 2025 (SCI-Expanded, Scopus)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 19
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/app151910484
  • Dergi Adı: APPLIED SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-20
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • İstanbul Yeni Yüzyıl Üniversitesi Adresli: Evet

Özet

This paper presents a hardware-in-the-loop (HIL) simulation case study on the application of High-Order Sliding Mode Control (HOSMC) to a flexible-link robotic arm. The developed HIL platform combines physical hardware components with a simulated plant model, enabling real-time testing of control algorithms under realistic operating conditions without requiring a full-scale prototype. HOSMC, an advanced nonlinear control strategy, mitigates the chattering effects inherent in conventional sliding mode control by driving the system to a reduced-order sliding manifold within a finite time, resulting in smoother actuator commands and reduced mechanical stress. Flexible-link arms, while lightweight and energy-efficient, are inherently nonlinear and prone to vibration, posing significant control challenges. In this case study, the experimental HIL environment is used to evaluate HOSMC performance, demonstrating improved trajectory tracking, reduced overshoot, and minimized steady-state error. The results confirm that HIL simulation offers an effective bridge between theoretical control design and practical implementation for advanced robotic systems.